Project ERC COTOFLEXI

Flexoelectricity is the generation of electric polarization under mechanical strain gradient or mechanical deformation due to the electric field gradient (converse flexo). It grows dominantly in energy density at submicro- or nanoscale enabling self-powered nano devices such as body implants and small-scale wireless sensors. Among the emerging applications of flexoelectricity, energy harvesters are the basic front devices of wide technological impact.

Flexoelectric Nano Energy Harvesters

Among the emerging applications of flexoelectricity, energy harvesters are the basic front devices of wide technological impact. Despite the advantages offered by flexoelectricity, research in this field is still in germination. Experiments are limited in measuring, explaining and quantifying some key phenomena. Materials engineering and engineering of strain are the key challenges to bring energy harvesting structures/systems to become a viable technology. Accomplishment of this task pressingly requires a robust modelling tool that can assist the development of flexoelectric energy harvesters. Hence, the aim of the project is to develop a computational framework to support the characterization, design, virtual testing and optimization of the next generation nano energy harvesters. It will be able to (1) predict the energy conversion efficiency and output voltage influenced by layout and surface effects of structures in 3D, (2) to virtually test the performance with various vibrational dynamic conditions, and (3) to break through current designs of simple geometry for flexoelectric structures by optimization considering manufacturing constraints. Innovative metamaterial/3D folding energy harvesters expectantly outperforming current piezoelectric energy harvesters of the same size will be manufactured and tested.

Field of Research

About Project COTOFLEXI

Selected Results

Publications

  • Materials characterization at nanoscale
  • Nanoscale optimization and strain engineering
  • Mathematical and numerical model for flexoelectricity
  • Application and validation